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1 Multiplicativity and the Functional Calculus for the Lapla-
cian

1.1 Multiplicativity of the functional calculus

Last time, we were proving the multiplicativity of our functional calculus:

Proposition 1.1. Let A be self-adjoint, and let v, € Co(R). Then p(A)p(A) = (p)(A).

Proof. Last time, we showed that Im (A) C D(A7) for all j and that for any polynomial

p, p(A)p(A) = (pp)(A).
Let x € Co(R) with 0 < x <1 and x = 1 on supp(p) Usupp(?). For u,v € H, write

| (p(A)u, (px)(A)v) = (p(A)u, p(A)x(A)v)
Since ¢ € D(A7) for all j,
= (p(A)p(A)u, x(A)v)
= ((pp)(A)ux(A)v).
Take a sequence p; of polynomials such that xp; — x¢ = ¢ uniformly on R. Recall that
we had for all f € Cp, [f(A)lleerm < 21 - Thus, (xp;)(4) 2205 4(4) = w(Ay*,
Also, P = PjXx¥ — Yy uniformly, so p,;¢(A) LUHH), (Yp)(A). We get

(W(A)p(A)u, v) = (p(A)u, P(A) ) = (@) (A)u, x(A)v) .

Now let x T 1 pointwise; we claim that x(A) — 1 weakly. So we get (Y(A)p(A)u,v) =
(Yp)(A)u,v) for all u,v.

To prove that x(A) — 1 weakly, note that if p; € Cp, ¢ € Cp, and ¢; — ¢ pointwise
boundedly (3C such that |¢;(z)| < C for all j,x), then

(3 (A)u, v) = / (V) iy 27 / PO ditan(N) = ((A)u,0)

by polarization and dominated convergence. O



1.2 Spectrum and functional calculus for the Laplacian

Let A = —A on L?*(R") be self-adjoint with D(A) = H?*(R"). Given ¢ € Cp(R), we
compute p(A).

Proposition 1.2. Spec(A) = [0, 00).

Proof. First, Spec(A) C [0,00), as A > 0: for u € D(A),
(Au,u) = / |Vul? > 0.

To get equality, it suffices to show that (0,00) C Spec(A) (as the spectrum is closed). For
contradiction, let A > 0 be such that A — X\ : D(A) — L? is bijective. Then there exists a
constant C' > 0 such that |lul|z2 < C||[(A — Nul| 2 for any u € D(A).

Remark 1.1. A has no eigenvalues:! If u € L? and (—=A — M\)u = 0, then taking the
Fourier transform, we get

(I€* = Mya(e) = o,
sou=0 = u=0.
Instead, we want to find generalized eigenfunctions u € L such that (—A —\)u =
0. We can take u(z) = €€ for £ € R" (where |£]> = ). Consider the quasimodes?
uj(z) = j7?x(x/7)e™E, where x € C3°(R") is 1 near 0 with ||x||z2 = 1. Then |u;||z2 = 1,
and 4
1A = NG x(@/5)e )|z = O(L/4)-

So the lower bound inequality for A — A\ cannot hold.
To determine ¢(A) for ¢ € Cy(R), notice that p(A) = 0 if supp(p) C (—o0,0). Com-
pute the resolvent first: If Im 2z # 0,

Ru=v, uw,v€l?® < (-A-z2v=u

By Fourier transform, we get

R(z)u=F! (éﬁ?g) :

We get

(o(A)u,u) = lim - / o(\) (RO + i) — RO\ — ie))u, u) dA

e—0+ 271

LThis says that the spectral measures have no pure point components.
2This terminology is common in mathematical physics literature.



By Parseval,
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Integrate first in A and send € — 0 using dominated convergence.

= e [ PRI EE P e

So we get

p(A)u = FH(p(IE)0).

1.3 Correcting the norm bound in the functional calculus

Proposition 1.3. Let A be self-adjoint, and let ¢ € Cp(R).

lo(A) | cem,my < llelle-
Previously, we had a factor of 2 in the bound.
Proof. We have
le(A)ull® = {p(A)u, p(A)u)

= (@(A)p(A)u, u)
= (lpl*(A)u, u)

— [ 1P dinaty
< [lpllFee [l
We also get the following result.

Corollary 1.1.
(A ey < @l (spec(ay)-

Next, we will extend this multiplicativity property to more continuous functions.
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